Molecular Target Synopsis
Overview
Domains and Structures
Drugs and Clinical Candidates
Druggability
Chemistry
Ligand Efficiency Plot
Pathways
Family Cladogram
Interaction Network
Gene Expression
Gene Copy Number Variation
RNAi
Mutations
Germline Genetics

ERBB4 (Q15303) - Overview - Molecular Target Synopsis

Protein


ERBB4, Receptor tyrosine-protein kinase erbB-4
Enzyme Classification 2.7.10.1
UniProt Q15303

Also Known as ERBB4_HUMAN, ERBB4, HER4

Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins and EGF family members and regulates development of the heart, the central nervous system and the mammary gland, gene transcription, cell proliferation, differentiation, migration and apoptosis. Required for normal cardiac muscle differentiation during embryonic development, and for postnatal cardiomyocyte proliferation. Required for normal development of the embryonic central nervous system, especially for normal neural crest cell migration and normal axon guidance. Required for mammary gland differentiation, induction of milk proteins and lactation. Acts as cell-surface receptor for the neuregulins NRG1, NRG2, NRG3 and NRG4 and the EGF family members BTC, EREG and HBEGF. Ligand binding triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Ligand specificity and signaling is modulated by alternative splicing, proteolytic processing, and by the formation of heterodimers with other ERBB family members, thereby creating multiple combinations of intracellular phosphotyrosines that trigger ligand- and context-specific cellular responses. Mediates phosphorylation of SHC1 and activation of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1. Isoform JM-A CYT-1 and isoform JM-B CYT-1 phosphorylate PIK3R1, leading to the activation of phosphatidylinositol 3-kinase and AKT1 and protect cells against apoptosis. Isoform JM-A CYT-1 and isoform JM-B CYT-1 mediate reorganization of the actin cytoskeleton and promote cell migration in response to NRG1. Isoform JM-A CYT-2 and isoform JM-B CYT-2 lack the phosphotyrosine that mediates interaction with PIK3R1, and hence do not phosphorylate PIK3R1, do not protect cells against apoptosis, and do not promote reorganization of the actin cytoskeleton and cell migration. Proteolytic processing of isoform JM-A CYT-1 and isoform JM-A CYT-2 gives rise to the corresponding soluble intracellular domains (4ICD) that translocate to the nucleus, promote nuclear import of STAT5A, activation of STAT5A, mammary epithelium differentiation, cell proliferation and activation of gene expression. The ERBB4 soluble intracellular domains (4ICD) colocalize with STAT5A at the CSN2 promoter to regulate transcription of milk proteins during lactation. The ERBB4 soluble intracellular domains can also translocate to mitochondria and promote apoptosis. Monomer in the absence of bound ligand. Homodimer or heterodimer with another ERBB family member upon ligand binding, thus forming heterotetramers. Interacts with EGFR and ERBB2. Interacts with CBFA2T3 (By similarity). Interacts with DLG2 (via its PDZ domain), DLG3 (via its PDZ domain), DLG4 (via its PDZ domain) and SNTB2 (via its PDZ domain). Interacts with MUC1. Interacts (via its PPxy motifs) with WWOX. Interacts (via the PPxY motif 3 of isoform JM-A CYT-2) with YAP1 (via the WW domain 1 of isoform 1). Interacts (isoform JM-A CYT-1 and isoform JM-B CYT-1) with WWP1. Interacts (via its intracellular domain) with TRIM28. Interacts (via the intracellular domains of both CYT-1 and CYT-2 isoforms) with KAP1; the interaction does not phosphorylate KAP1 but represses ERBB4-mediated transcriptional activity. Interacts with PRPU, DDX23, MATR3, RBM15, ILF3, KAP1, U5S1, U2SURP, ITCH, HNRNPU, AP2A1, NULC, LEO1, WWP2, IGHG1, HXK1, GRB7 AND ARS2. Interacts (phosphorylated isoform JM-A CYT-1 and isoform JM-B CYT-1) with PIK3R1. Interacts with SHC1. Interacts with GRB2. Interacts (soluble intracellular domain) with STAT5A. Interacts (soluble intracellular domain) with BCL2. Interacts (phosphorylated) with STAT1.

3U9U
CRYSTAL STRUCTURE OF EXTRACELLULAR DOMAIN OF HUMAN ERBB4/HER4 IN COMPLEX WITH THE FAB FRAGMENT OF MAB1479
RCSB/PDB
Inspect Structure
See all 3D Structures for ERBB4

Isoforms / Transcripts (Protein Coding)


Drugs


ERBB4 is targeted by Approved Drugs Afatinib, Vandetanib. (see details)
Afatinib
Vandetanib

Sub-cellular localization


Gene Copy Number Variation


In COSMIC - Cell Lines Project ERBB4 has gain in 0 cell-lines, loss in 2 cell-lines and no signal in 1002 cell-lines. (see details)

Gene Expression


In NCI60, the highest expressing cell lines are: NCI_H522, IGROV1, OVCAR_4

In Array Express (RNA-seq of 675 commonly used human cancer cell lines), the highest expressing cell lines are: NCI-H522, COV434, COR-L47

In Array Express (RNA-seq of long poly adenylated RNA and long non poly adenylated RNA from ENCODE cell lines), the highest expressing cell lines are: SK-N-SH, NHLF, HSMM

(see details)

RNA Interference


ERBB4 was reported in the following RNAI studies:

Cell - Large Scale Profiling of Kinase Dependencies in Cancer Cell Lines, the highest RNAi cell lines are: HCH1, MG63. (see details)

3D Structures


For ERBB4 there are:
10 structures (24 chains) solved
5 are solved in complex with at least one small molecule ligand
1 are solved with an approved drug

ERBB4 is solved in complex with the approved drug(s):

FMM/LAPATINIB (3BBT_B, 3BBT_D).

(see details)
Molecular Target 3D Synopsis

Screening and Chemistry


ERBB4 has been screened with 1807 compounds (3522 bioactivities), 597 compounds have bioactivities that show binding affinity of <= 500nM (1005 bioactivities). (see details)